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Mean-field renormalization group approach to two-dimensional
site directed percolation

A das Neves and J Kamphorst Leal da Silva

Departaments de Fisica, Instituto de Ciéncias Exatas, Umversidade Federal de Minas
Gerais, CP 702, 30161, Belo Honzonie MG, Brazil

Abstract. Two-dimensional site directed percolation 1s studied by the mean-fi¢ld renor-
malizauon group approach to bulk and surface critical properties Extrapolation techniques
for the exponents and the percolatton threshold are descrbed A very good estrmate of
the percolation threshold (p,=07055=0 0001} and the first cvaluation of the surface
exponent y,, =0653=1 are obtained

1. Introduction

It is well known that mean-field-like approximations always give classical critical
exponents. However, mean-field approaches can be improved by the intreduction of
scaling concepts in such a way that non-classical expenents can be obtained.

The first of these methods has been introduced by Indekeu, Marnian and Stella [1],
namely the mean-field renormalization group (MrFrG). These authors have established
an important bridge between the classical and modern theories of critical phenomena,
Using two small clusters and scaling appropriately the effective field on the boundary
of the cluster they have obtained a renormalization group mapping The fixed point
and the associated critical exponents have been good estimates of the real critical
parameters. This method has been applied to a wide range of critical phenomena like
classical and quantum spin models, both ordered and disordered, dynamical critical
phenomena in Glauber model (sze [2] and references therein), geometirical critical
phenomena and percolation [3].

In order to improve these ideas and consider surface effects, Indekeu ef af [2] have
proposed a new MFRG with an unified approach to bulk and surface critical behaviours.
This approach has improved the accurzey of the previons MFRG results because the
boundary effective field must be scaled as a surface field Now, the renormalization
group transformation 1s obtained by considering three clusters, instead of two clusters.
We will denote this new version of the method as the theee-cluster MFRG and the
previous version as ‘he fwe-cluster MFRG.

Some of the reasons for the success of MFRG is the possibility of easy and wide
applications at very low computational cost. In this paper we apply the three-cluster
MFRG to the site directed percolation problem [4] in the square lattice. Firstly, we
evaluate exactly the percolation probability of finite clusters in the spirit of a mean
field. Afterwards we interpret this physical quantity following the three clusters MFRG,
The directed percolation problem has been chosen because on. can use a personal
computer ic consider relatively big clusters, in such way that we can investigate the
convergence of the MFRG results. Moreovey, it is the first time that this problem has
- been studied with the three-cluster mrro. It is worth mentioning that the site and bond
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two-dimensional directed percolation probiems have been previously considered in
the framework of the two-cluster MFRG [5] with large clusters. The results, however,
have not bgen so good. In particular, the critical threshold was slightly out from the
expecied results from series expansions. This fact has also motivated the use of the
three-cluster MFRG in our work, since it js expected that the appropriate scaling of
the effective field, which must scale as a surface field, may improve the results. Moreover,
we discuss the extrapolation processes of the percolation threshold and the exponents
for the three-cluster MFRrG. These processes are not evident because we need three
clusters (and not twe clusters, as usual) to establish the renorimalization mapping.

This paper is organized as follows. In sechion 2, we present the sequence of
mean-fieid clusters as well as the method of evaluating the main quantity which will
be used laier on. Section 3 15 concerned with the interpretation of the results obiained
in the previous section in the framework of the three-cluster MFRG. In the last section
We presenit QU SUmMmary.

2. Miecan-eld clusters

In site directed percolation [4], a site of the lattice is occupied with a probability p
and is unoccupied with a probability 1 — p, independently of the other sites. The bonds
of the lattice have an arrow directed towards a privileged direction, in such 2 way that
a cluster of occupied sites begins in an origin site and extends following the privileged
direction (the vertical direction in figure 1). The order parameter is given by P{p), the
probability that the site at the origin is a source of an infinite cluster. The ‘external
field’ is described by h, the probability that a given site is connected to an ‘outside
ghost site’ by a bond [6]. The percolation probability can be written in terms of h as

Yo B 2y (2.1)

P(ph)=1-L=1+
(p. B) h ah S

Here su,(p) is the probability that the origin is the source of a cluster of connected s
sites, the sum over s is restricted to finite clusters and f is the equivalent of the free
energy per site [7].

Figare 1. The two smallest mean-field clusters Empty curcles represent the mean-field sites
The dashed limes are the bonds comnecting the sites of the cluster to the ghost site
{represented by a square). {a; A cluster with N=1site {b) N=3
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The mean-feld calculations follow the work of D¢ Bell [3]. We evaluate P(p, h)
exactly for a cluster of N sites. We consider asviametric clusters with N =1 up to
N == 78 sites. Two of these clusters are depicted in figure 1. This procedure is equivalent
to considering symmetric ctusters with the middle site being the origin of the directed
pescolation problem, Let b be the probability that a site adjacent to the cluster {a
mean-feld sitc} is connected to the infinite cluster. The bond conngciing the origin to
the ghost site is present with probability A If thus is the case we have a percolating
configuration which is indenendent of the sites and mean-feld sites. Then ali configur-
ations with the origin connacted to the ghost site give us a term k 1n the percolation
probability. When this pond is absent, we must consider configurations that percolate
by the mean-field sites. For example, for the N =1 cluster (fgure 1(a)) the ongin site
must be occupied and at least one mean-field site must be connected to the percolation
cluster. These configurations give us a teim (1 — 4 pp*+2pb(1 b ! in the percolation
probubility. Therefore for the N =1 cluster we have

P(p, b BYy=h(1—2pb)+pi—~b*+2b) (2.2}

up to terms of order of hb and b°. The mean-field approximation is obtained by setting
b= P(p, k). This approach gives us the classical exponent 8 =1 and an estimaie of
the eritical threshold p,=0.5.

We nse the “transfer matriz’ methed of Blease [8] to evaluate exactly the coefiicients
of t'wi{g; h, &) for the other clusters.

3. The mean-field rencrmalizstion groxp approach to bulk snd surfece
eritical behaviowrs

3.1. Definition of the rescaling transformations

In the strategy of *he mFrRG approach to bulk and surface critical behaviours we
consider that the percolation probability of three clusters with N, N’ and N” sites in
the two-dimensional case are related by the following relation

Pl 9, B, 0) = I3 % Pot p, b, b)
(3.3)

LI NN 2-¥ FIRY
PN"(F H h”s & ) = LN'_;’\[PN(LD; hs b;

where 2—y;, 1s the scaling dimension of the percolation probability and L, is the
length-rescaling frictor associated with clusters of N' and W sites, nzmely

N\ V2
Lyn = (}:{;) . 3G

It is important to note that one requires (3.1} to hold to leading orders in & and & As
b concemns the percolation probability of boundary sites, fo. large clustsrs it must
scale ike a surface ficld, i.e.

b= Ly b
S {3.3)
b= L% b,

Here 3. is the ewponent related to the surface "external field. We determine the
exponent 2~ v, — . self-congistently by impaosing that the two difierent maps of (3.1}
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nave the same fixed point. In thes fashion the fixed point p* and 2 — y, — y;, are unigaely
fixed. The exponents y, and p, are obtzined from

dp'| ¥,

= = A ¥ = [,

dp |, NP E B (343
Ah(p'\-) = L‘J.

where Ay is defined by &’ =A,.( Pp)h, which is obtaired from the leading order in h of
{3.1). These exponents (y, and y, ) and the surface one { y,, ) are not uniquely determined
We obtain slightly different values from the mappings. Although only two maps are
defined 1t (3 1), a third one involving the clusters with N’ and N can be defined. It
has the same fixed point and the same 2 - v, — y3,; exponent as the maps defined above.

Note that the infinite cluster is characterized by two correlation lengths [4], one
along the main diagonal £ ~ (p —p.}” "' and anctner perpendicuiar to the main diagonal
£, ~{p—p) "~ Only & rescales like a simple length under the cluster transformations
considered here. 80 we hve that v =1/y, [9]

i table 1 we present the fixed pomnis and the exponents obtained by fixing two
clusters with W =78 and N'=66 sites and allowing the third one to change from
N"=1wup to N"=3535. Only the exponents obtained by the maps defined in (3.1) are
shown It is worth mentioning that the fixed points for the last clusters are already
very near to the best value of the percoiation threshold obtained from series expansions
P.=0.705 482 4. 4 [10]. We can also observe for the largest clusters that the exponents
obtaiited from different maps with N, N’ and N"” fixed have very close values.

Table 1. Results of the mean-field renormalization group (an approach to bulk and surface
properties) Tor the clusters with N =78 and N’ =66 sutes fized The thard cluster has N” sites

N p v pone Pl g ppval Vi

1 0766931 G.7I412 087294 1.668 99 172740 061086 0.55205

5 0703225 070902 080757 1674723 170773 0.620 70 058719

3 0703671 070802 0776 49 167524 1698 04 062239 059979
10 0702955 070739 075739 167589 169217 062379 6 €07 51
i5 0704143 070697 0.744 03 167631 1 688 16 062458 061272
2 0704274 070667 073404 1.676 61 168522 062513 061651
g 0704372 0.70545 0.726 18 1676 83 168296 0.625 54 061941
36 0704427 070628 071972 167760 168115 062586 062171
45 0704509 070615 071443 167714 1679 66 0.626 11 062359
55 070455  0.70603 070938 1.67725 167841 062633 062517

3.2. Extrapolation of the percolation threshold

in order to extrapolate the sequence of fixed points and obtamn an estimate of the
critical threshold p., we consider that £{p.)~ Ly~ where Ly is the linear dimension
of & finite cluster Since N and N’ are fizxed for all considered clusters, we have taken
L= \/1\7 the linear dimension of the third changing cluster. This is natural becaunse
the other lmear dimensions are equal for all three cluster series and they enter the
axpress;on for & as a constant. A rather good least-squares fit of In(p.—p*)x
(—~1/2y) In L with the assumed value #y = 1.733 is obtained Table 2 shows the variation

of thc central astimate of the critical threshold (p.)} with the number of data points
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Table 2. Estimates of p_ based on the 10 pomnts obtamed from the three-cluster MFRG with
the clusters of W =78 and ™' =66 siies fixed Shown 1s the varration of the central estimate
with the number (A1) of considered points p, has been obtained by Bising #ith the vanable
VN The best sertes estimate ts P.=0705 489+ 4 [10]

M PAM )

070632
0705 60
070536
070552
070548
070545

1

Lh h ~) Q0 O &

(M) considered 1n the case where N =78 and V' =66 are fixed. It shows the extrapola-
tion with M =10 pomnts However the first points must be worse than the last ones
because of the small sizes of the first clusters. So, we consider M =$ points by ignoring
the firsi one, which corresponds to the fixed point of the (N =78, N'=66, N"=1}
clusters. When the second fixed point is alsoe ignored, we have M =8 and so on. We
can conclude that p.=0.7055 =1 {ihe error ix in the Iast digit), a value which is in very
good agreement with the best evaluation of the series. Moreover, the compuiational
cost of the present work is lower when compared with series work, We have evaluated
the estimates of p. with other fixed clusters (N"=1, N'=3,6, .,78). Except for the
first case (p.=0.7060:x3), we have obtained the same estimate p,=(.7055, with the
error changing from +£3 for the first clusters to 2 for the last ones.

Another way to do the extrapolation for p, can be obtamed by considering that
£~ Ly n~ mstead of &~ Ly-. Here Ly - 15 a0 effective length, defined in [11] as an
average projection along the parallel direction of the vectors beginning at the ongin
site and ending in each site of the cluster. A good fif is obtained with In(p.—p™) %
(~1/7) Ly n- The esiimates of the percolation threshold are also very good and agree
with the values obtained previously, This indicates that the two scaling factors are
similar for the asymmetric clusters, in agreement with Redner [9]

It is important to mention that the usual two clusters MrrG application to the
two-dimensional directed percolation {51 has been given an estimate of p. slightly out
from the best value. This has occurred because the boundary effective field b has not
been scaled as a surface one. Once we correct this point, we obtain good estimates
of p..

3.3. Extrapolation of the exponents

In order to estimate 3, by extrapolation processes, we follow an approach similar io
that used by Reynolds e of [12]. Let us consider the eigenvalue A, calenlated from
the three-cluster method. A correction term A(L, »/KTT’}, depending not only on the
scaling factor between the two cluseers but also on the linear dimension of the third
cluster entering the renormalization group mapping, can be defined by the following
relation:

ALY = AL,V NS LN, (3.5)

Here L=V N/N'. We expect that A 2pproaches the true value when v N"- oo and
L-c0 or L—1. Thus we must do two extrapolations: one involving the limit of v N*
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and the other implying L-><cor L+ 1 We suppose that for N* big enough the correction
term behaves as

AL VN ~AL) [ 1 +L,_-] (3.6)
i \!N"

where ¢ 15 a constant and A(L) 1s the correction term involving only the scaling factor.

Let us discuss the himit L— 1. In this limit we can write that L~ 1+ 8, where & is
& small deviation of L {rom its asymptotic value. Using that A, = L’> we obtain from
{3.5) and (3.6)

true A(L)

¥ —5~ﬁ+y;‘~“'°(L, VN ALY+ (3.7)

a
'N"‘.
This equation suggests that vhe sequence yc"’"(L,\/N”) should be first extrapolated

aganst the vanable 1/v N". 1o the asymptotic region we have a straight line with an
mtercept given by

, rpe AW) -t
yplL)= Al AL (3.8)

The next step is to consider the obtained sequence y,(L) Since we expect that y,,

annraacrhae the friza aynanaent v the fmit S0 A TY cosned damand am o Tinsar fares
GEMIVEVIIWD W LR UAPUilbllt nii I—IAU L1LL3AL & TF Uy ['IJ\J-J}' LU U\JPUIIU ULl ﬂ- MO L Ll ilg

in 8 Near L =1 we must have that A{L)~1- 86K, where K is a positive constant.
Then from (3.8) we can waie

Y=yt + 8K {3.9)

suggesting that the extrapolation must be made in the variable 6 = L —1. The intercent
is equal to y3™ in the asymptotic region. A similar discussion can be made for the
limit L.

In table 3 we show the estimates of y}, with the number M of considered points
when the clusters of N =78 and N'=66 are fixed and the third one varies from ! site
to 55 sites The y&" sequence plotted against I/\/F is in a very good straight Ie.
We have also changed the exponent of the N" in order 1o check the 1/2 value. The
estimate of y;, is essentially independent of the exponent for values near 1/2. Moreover,
the best fit is obtained with a value very close to 1/2. The estimates of y;** with M

Table 3. Estimates of the parual quantittes {¥}, #; and y}.) related to the critical exponents
obeained from the three-cluster ha#RG with the clusters of W =78 ang N’ =65 sites fixed.
Shown 1s the vanation of the central estimmate with the number (M) of considered pomits,
The fittmg was made with the vanable 1/\/-1’:’".

M ¥p ¥h Vhs

10 0704 64 167868 0.629 01
9 070517 1678 13 0.627 96
8 0,705 07 1.678 23 0.628 14
ot 0.705 04 167826 0.628 19
6 070502 167628 062323
3 D.705 00 167320 0.628 25
4 0,704 99 167831 0.628 28
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Table 4. Esumates of y,, v, and y,,; based on the 11 points obtaned from the three-cluster
MFRG 1k the hmit L—1 Shown is the vanation of the central estimate with the number
(M) of considered points The expected valuz for y, 15 0 5767 2 (10}

M v, Fh Fas

11 067193 i 66533 3 648 47

10 0.654 25 1 661 46 0649 15
9 064617 165934 65144
8 0640 74 165825 0635242
7 063683 165772 065307
6 063392 165727 065337
5 063158 1656 95 0653 58
4 062965 165570 0653 73

are
a value which 1s 10% out from the expected one {», = 1.7339+3) [10). We have aiso
considered the L— oo himit by fixang the N’ =10 cluster, and allowing the others to go
to infinity with the procedures described above. We have obtained that »; =1.53£2

The » exponent can also be obtained by considering that the scaling factor L,
between two clusters is given by the ratio of the effective lengths (Ly n/ Ly ) [11] as
discussed before. Again we have an exponent depending on the scaling facior and on
the linear dimension of the third cluster Thus we can use the same analysis We obtain
the same » as befors in the two Hmuts (L)1, Ly o) with the same fiting quality.
It means that for these asymmeiric clusters the effective length vanable is equivalent
to the +/N length variable as argued by Redner {9].

Extrapolations of y, and y,, follow precisely the same arguments as for y,. In table
3 is shown the variation of the central estimates for y, and y}, with the number M of
considered points when clusters of N =78 and N’ =66 sites are mamntained fixed and
the third one is varying from 1 up to 55 sites. The case L—+1 15 presented n iable 4.
There we have the variation of the central estimates of y, and y,, with the number of
poinis consrdered. We conclirde that 3, = 1§ 65721 and y,, = 0.653 % 1. This s the first
evaluation of yy, for the directed percolation problem. The value of 3y, indicates that
the directed exponents do not obey the usual scaling faw y, = 4y, = 1.47 [13].

re shown in table 4 In this case we constder the £ 1 limit We obtain that a1 = 1.58+1.

4. Sumntmiary

The mean-field renormalization group approach to bulk and surface properties has
been applied to the two-dimensional sue directed percolation problem. We have used
mean-field asymmetric clusters with 1 up to 78 sites, We have obtained 2 very good
estiraate of p.=0 7055+ 1. The cbtaned » exponent is 10% smaller than the expecied
value. We believe that by considening a few more clusters this last result will be
mmproved. We have evaluzted also the exponent 3, and found for the first time the
vatue for the surface exponent y,, =0.653:1. Several exirapolation schemes have
discussed in order to obtain the three-clusier MFRG results in & systematic way. Finally,
it is worth mentioning that in the three-cluster MFRG the mcorrect assumption of the
two-cluster MFRC that the boundary efiective field scales as the order parameter has
been corrected. This is essennal in the study of the convergence of the MFRG results,
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