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1 Phys A Math. Gen 24 (199:) 5353-5370 Pnnted tn the U# 

site directed percolation 

A das Neves and J Kamphorst Leal da Sllva 
Depanamento de Fbica. lmtituto de CiEncms Enatas. Umversidade Federal de Minas 
Gerais, CP 102,30161, Be10 Hoiizante MG, Brazrl 

Abstract. Two-drmensmnal site directed percolation is studred by the mean-fieid reom- 
mahzatmngroup approach to bulk and surfwe critical pmpenie~ Ertiapolation techniques 
For the exponents and the percolation threshold are descobed A very good emmate of 
the peicolation threshold (p.=O7055=0000:) and the first evaluation Of the surface 
exponent yhr = 0 653 I 1 are obtained 

1. htFOdu&OB 

It is well known that mean-field-like approximations always give ciassical critical 
exponents. However, mean-field approaches can be improved by the introduction of 
scaling concepts in such a way that non-classical exponents can be obtained. 

The first of these methods has heen introduced by Indekeu, Mantan and Stella 111, 
namely the mean-field renomahation group (MfRG).  These authors have established 
an important bridge between the classical and modem theories of critical phenomena. 
Using two small clusters and scaling appropriatel>- the effective field on the boundary 
of the cluster they have obtained a renormalization group mapping The fixed point 
and the associated critical exponents have been good estimates of the real critical 
parameters. This method has been applied to a wide range of critical phenomena like 
classical and quantum spin mode!s, both ordered and disordered, dynamical critical 
phenomena in Glauber modei (see [Z] and references therein), geometrical critical 
phenomena and percolation [3].  

In order to improve these ideas and consider suriace effects, Indekeu er a? [ 2 ]  have 
proposed a new MFRG with an unified approach to bulk and surface critical behaviours. 
This approach has improved tht; iccurzcy of the previous MFRG results because the 
boundary effective field must be scaled as a surrace field Now, the renormalization 
group transformation is obldined by considering three clusters, instead of two clusters. 
We will denote this new version of the method as the rhree-cluster MFRG and the 
previous version as :he two-cluster MFRG. 

Some of the reasons for the success of MFRG is the possibility of easy and wide 
applications at very low computational cost. In this paper we apply the three-cltister 
MFRG to the site directed percolation problem [4 j  in the square lattice. Firstly, we 
evaluate exactly the percolation probability of finite clusters in the spirit of a mean 
field. Afterwards we interpret this physical quantity following the three clusters MFRG. 
?'he directed percolation problem has been chosen Secause oni can use a personal 
computer io consider relatively big clusters, in such way that we can investigate the 
convergence of the MFRG resuits. Moreover, it is the first time that this problem has 
been sicdied wirh the three-cluster MFRG. It is wonh mentioning that rhe site and &on6 
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two-dimensional directed percolation problems have been previously considered in 
the framework of the two-cluster MFRG [SI with large clusters. The results, however, 
have not heen so good. In partimlar, the critical threshold was slightly out from the 
expected results from series expansions. This fact has also motivated the use of the 
three-cluster MFRG in our work, since it is expected that the appropriate scaling of 
the effective field, which must scale as a surface field, may improve the results. Moreover, 
we discuss the extrapolation processes of the percolation threshold and the exponents 
For the three-cluster MFRG. These processes are not evident because we need three 
dusters (and not two clusters, as usual) to establish the renormalizarion mapping. 

This paper is organized as follows. In sectlou 2, we present the sequence of 
mean-field clusters as well as the method of evaluating the main quantity which will 
be used later on. Section 3 is concerned with the interpretation of the results obtained 
in the previous section in the framework of the three-cluster MFRG. In the last section 
we present our summary. 

A das Neves and J Kamphorst Leal da Silva 

2. Meam-field clsaters 

In site directed percolation [4], a site of the lattice is occupied with a probability p 
and is unoccupied with a probability 1 -p, independently of the other sites. The bonds 
ofthe lattice have an arrow directed towards a privileged direction, in such a way that 
a cluster of occupied sites begins in an origin site and extends following the privileged 
direction (the vertical direction in figure 1).  The order parameter is given by P ( p ) ,  the 
probability that the site Et the origin is a source of an infinite duster. The ‘external 
field‘ is described by h, the probability that a given site is connected to an ‘outside 
ghost site’ by a bond [6] .  The percolation probability can be written in terms of h as 

df ( 1 - h )  d 
ah p ah I 

P ( p ,  h )  = 1--= I f -  -E n s ( p ) ( l - h ) * .  

Here sn,(p) is the probability that the origin is the source of a cluster of connected s 
sites, the sum over s is restricted to finite clusters and f is the equivalent of the free 
energy per sige C7j. 

F&om 1. ?he two smallest mean-field clusters Empty ECFICS represent the mean-field sites 
The dashed lines arc tho bonds connecting the site9 of the duster to the ghost site 
(represented by a square). (a; Acluater with N = l  site ( 6 )  W = 3  
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The mean-field calculations fol5w the work of De Bell [3]. We evaluate P ( p ,  h )  
exactly for a cluster of N sites. We consider asynmetric clusters with N = 1 up to 
N = 78 sites. Two of these clusters are depicted in figure 3 .  This procedure is equivalent 
to considering symmetric clusters wirh the middle site Ireiq the origin of the directed 
perdation problem. Let b be the probability that a site adjacent to the cluster (a 
meas-field siti) is connected to the infinite clcster. The bond connecring the origin to 
the gsost site is present witb probability h. If this is the case we have a percolating 
configuration which is independent of the sites and mean-held sites. Then all configur- 
ations with the origin cons-cted to the ghost site give ns a term h in the percolation 
probability. Wnan this nond is absent, we mist consider configurations that percolate 
by the mean-field siies. Tor example, for the N = 1 duster (figure I ( a f )  the ongin site 
must be occupied and at least one mean-field site must be connected to the percolation 
cluster. These conSgurations &e us a teim (1 - b){pb2+2pb( l  - b,‘ in the percolation 
probability. Therefore for the N = 1 cluster we have 

P ( p , h ,  b ) = h ( I - 2 i ; b ) + p i - - b 2 + L b )  (2.2) 

a p  lo terms of order of hb and b’. The mean-field approximation is obtained by setting 
b = P(p, h ) .  This approach p e s  us the classicai exponent p = ; ana an esumaie of 
the ctit’cai threshold p,=O.5. 

We use the ‘transfer matrix’ method of Blease [a] to evaiuate exactly th- coeficients 
of l’N(.r;h, E) for the other dusters. 

3. Tba neam-fidd renarma:izs‘do~~ g m x p  approach to bslBk and sosface 
eritiecl beLav4orais 

li. Dfinirion of flie resealing transJonnations 

In the strategy of *he MFRG approach to bulk and surface critical behaviours we 
consider ?hat the percolation probability of three dusters with Ed, N’ and N” sites in 
the two-dimensional case are related by the foilowing ielation 

P~(p’ ,h ’ ,b ‘ )=L , : , , , . l p ,  2--1. D h,b )  

P,.(p’,, li”, b”) = E,.,;P,(p, h, b )  2-1 

where 2 - y ,  is tlie scaling dimension of the percoiation probability and Lpz,,?J is the 
len,&-rescaling f a o r  asscciated with clusters of 2.d’ and N sites, nsmely 

(3 2) 

It is important t~ noce tket one requires (3.1) to hold ?o leadine orders in b and h As 
b concems the percolation pobability eF boundary sites, fo. large clns*$rs it must 
scale like a surface field, i.c 

b’ = E:,, b 

b”= L>.,.,b. 
(3.3) 

He:e yk is the e:,ponent reiated bo the surface .external field‘. We determine the 
exponent 2 -:JI> - y,* seli-eoasistently by imposing that the two diEe:ent maps of (3.1) 
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have ?he same fixed poin?. In th!5 fashion the fixed point p' and 2- yh - y,, are uniqaely 
fixed. The exponents y, and yit are obtained from 
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(3.4) 

where Ah is defined by h'=hi , (p )h ,  which is obtaimd from the leading order in ti of 
(3.1hTheseexponents (yp  and y h )  arid thesurface one ( y h i )  arenotuniquelydetermined 
We obtain slightly different values from the mappings. Atthough only two maps are 
defined in (3 l), a third one involving the clusters with N' and W" c a i  be defined. It 
has the same fixed point and thz same 2 - yh - yhl exponent as the maps defined above. 

Note that the infinite cluster is characterized by two correlation lengths [4], one 
along the main diagonal Eli =- ( p  -pJ'" snd anotner perpendicular to the main diagonal cl - ( p  - p J " -  Only cl! re3cales like a simple length under the cluster transformations 
consdeied here. Sa me h we thai uIl = l/>:" L9] 

ir. t3tie 1 we present &he fixed points and the exponents obtained by fixing two 
clusters with N=78 and N'=66 sites and allowing the third one to change from 
N"= 1 up to N" = 55.  Only the exponents obtained by the maps defined ir. (3.1) ale 
shown It is worth mentioning that the fixed points for the last clusters are already 
very near to the best value of the percolation threshold obtained from series expansions 

obtained from different maps with N, N 2nd Ai" fixed have very close values. 
- _ n  7 A C  10" 1 r l n l  11,- -"- ̂ I^^ Î.̂ e^_ .L^ I -,..-A--- .L^. *L^ " 1- 
p E - " . l V , ~ 0 7 - . *  LA",. ""5 c-1 a'uY V U I C L l r  ,"I L11S '.aLg.c"L . A Y D L n D  llliil L U G  cAy""rllrr 

Tablc 1. Results Of  the mean-field ienomalliation g a u p  (an approach to bulk and surface 
propertierirorthzclucerrwiih N=78and N '=66s~tesKxd Theth~rdclusterhas Water 

6 
10 
I S  
21 
28 
36 
45 
55  - 

0700931 0.71413 087294 
0 703 225 0.705 02 0 807 57 
0 703 671 0 708 02 0 776 19 
0 703 955 0 707 39 0 757 39 
0 704 143 0 706 97 0.744 05 
0 704 274 0 706 67 0 734 04 
0.704 372 0.706 45 0.726 18 
0704617 070628 071978 
0704509 070615 071443 
0 704 555 0.706 03 0 709 88 

1.668 99 
1 674 23 
1 675 24 
1 675 89 
167631 
1.67661 
1 676 83 
1 677 $0 
1.677 14 
1.67725 

1727 80 
1707 73 
1 698 04 
1692 17 
1688 16 
1685 22 
1682 96 
1681 15 
I 679 66 
167841 

0.610 86 0.55205 
6.620 70 0 587 19 
0 622 59 U 599 79 
0 623 79 0 607 51 
0 62458 0 612 72 
062513 061651 
0.62554 061941 
0 625 86 0.621 71 
0.626 11 0 623 59 
0 626 33 0 625 17 

3.2. Extrapolation of the percolatron threshold 

in  order to extrapolate the sequence of fixed points and obtain an estimate of the 
critical threshold p c ,  we consider that &(pc) -  Lr where L N .  is the linear dimension 
of B finite cluster Since A' and N are fixed for all considered clusters, we have taken 
LN.= JN", the linear dimension of the third changing cluster. This is natural because 
the other hnear dimensions are equal for a!l three cluster series and they enter the 
expression for til 2s a constant. A rather good least-squares fit of lb(p,-p*)X 

!E L with fhc assumed value vil = !;73? is obtained Table 2 shows the variation 
of the central estimate of the critical threshold (p.) with the number of data points 
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Table 2. Emmates ofp, based on the 10 poms obtained from the three-cluster MFRO wtfh 
the cluste~s ~f N = 78 and Ei' = 66 stlei fixed Shown 16 the vnnation of the central emmale 
with the number (hll of coastdered points pc has been obtained by Glting *tth the vmabie 
fir Thebert senesestinaterrp,=070548914[10] 

M PW) 

10 0 706 32 
9 0 705 60 
8 0 705 56 
7 0 705 52 
6 0 705 48 
5 0 705 45 

( M )  considered in the case where N = 78 and N' = 6 6  are fixed. It shGws the extrapola- 
tion with M = 10 points However the first points must be worse than the last ones 
because of the small sizes of the first clusters. So, we consider M = S points by ignoring 
the first one, which corresponds to the fixed point of the (N=75,  N'= 66,  N"= 1; 
clusters. When the second fixed point is also ignored, we have M = 8 and so on. We 
can conclude that p,=0.70551 1 (the error is in the iast digit), a value which is in very 
good agreement with the best evaluation of the series. Moreover, the computational 
cost of the present work is lower when compared with series work. We have evaluated 
the estimates of pc  with other fixed clusters (N"= 1, N'= 3 , 6 ,  . ,78). Except for the 
first case (pc=O.7O6O*5), we halve obtained the same estimate p,=0.7055, with the 
error changing from *3 for the first clmters to 1 2  for the last ones. 

Another way to do the extrapolation for pc  can be obtained by considering that 
~ll-Lll,N~ instead of fll- LW. Eere Lll,N- I S  an effective length, defined in [111 as an 
average p:ojection along the parallel direction of the vectors beginning at the origin 
site and ending in each site of the cluster. A good fit is obtained with In(p,-p*)r 
(-l/vll)Ll;,N,~. The estimates ofthe percolation threshold are also very good and agree 
with the values obtained previously. Tlus indicates that the two scaling factors are 
simi!ar for the asymmetric clusters, in agreement with Redner [9] 

It is important to mention that the usual two clusters MFRG application to the 
two-dimensional directed percolation [SI has been given an estimate of pc slightly out 
from the hest value. This has occurred because tbe boundary effective field b has not 
been sealed a5 a surface one. Once we correct this point, we obtain good estimates 
OfPC. 

3.3. Extrapolotion of the exppnnentc 

In order to estimate yP by extrapolation processes, we follow an approach similar to 
that used by Reynolds e2 ai [12]. Let us consider the eigenvalue A,, calculated from 
the three-cluster method. A correction term A ( L , f i ) ,  depending not only on the 
scaling factor between the two clusrers but also on the linear dimension of the third 
cluster entering the renormalizittion group mapping, CEO he defined by the following 
relation: 

A$*(L) = A(L, J N " ) h y ' C ( L , f i ) .  (3.5) 
Here L = m. We expect that epproaches the true value when e-;. m and 
L a m  or L+ 1. Thus we mu% do two extrapolations: one invoiving the limit of JN" 
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and the other implylng L + CO or L + 1 We suppose that for N" big enough the correction 
term behaves as 

(3.6) 

where c is a constan? ana  A(L) is the correction term involving only the scaling factor. 
Let us discuss the limit L +  1. In this limit we can write that L- l+S,  where 8 is 

a small deviation of L from its asymptotic value. Using that A, = L y p  we obtain from 
(3.5) and (3.6) 

This equation suggests ihat Lhe sequence yy"\L, f i )  should be first extrapolated 
against the vanable I : f i .  In the asymptotic region we have a straight line with ap 
intercept given by 

The next step is to consider the obtained sequence y;(L)  Since WP expect that y ;  

in 6. Near L= 1 we must have that .4(L)- 1 - S 2 K ,  where K is a positive constant. 
Then from (3.8) we can vmte 

Q---n,,lmr +L- +rill P Y - _ - ~ - ~  irj +he I:-:+ P A n  A /  r b ,Lrr---A -- - 1 ,--"-+n..- 
Y y y . " u I " * Y  .U* %."I '"p'Y"c"L "1. L l l l  LI111AL v - Y, a\-, C'UIIIUL "bpuuu "1' a tlllrll LC'U' 

y ;  = yF"'+ 6K 13.9) 

suggestirg that the extrapolation must be made in the variable 6 = L-1.  The intercept 
is equal to y;" in the asymptotic region. A similar discussi,~n can be made for the 
limit L+ CO. 

In table 3 we show the estimates of yb with the number M of considered points 
when the clusters of N = 78 and N' = 66 are fixed and the third m e  varies from I site 
to 55 sites The y?" sequence plotted against l j f i  is in a very good straight line. 
We have also changed the exponent of the N" in order IO check the 1/2 value. Tne 
estimate of y ;  is essentially independent of the exponent for values near 1/2. Moreover, 
the best fit is obtained with a value very close to 1/2. The estimates of yb"' with M 

%able% Estimates ofthe partial quantities (y;, 3,; and yL) related to the entical exponents 
abmmd from t l ~  rhree-cluster ~ . P R G  with the clusters of N=78 d m  W = 6 6  Sites fixed. 
Shown 1s the vanatton ofthe central estrmate_w!th the number (M) of considered pomts. 
The fitting wzs made with the ianable l / f i ' *  

10 0 704 64 1676 68 0.62901 
9 0 705 17 1.678 13 0.627 96 
R 0.705 07 1.678 23 0.628 14 
7 0.705 04 1 678 26 0.638 19 
6 0 705 02 1 578 28 0 628 23 
5 0.705 00 : 678 29 0.628 2: 
4 O.fO4 99 i 6 i8  3i  0.628 28 
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Tsble 4. Estimates of y,, yh and J,?~ based os the I I points obtained from the three-cluster 
MFRG I" the limit L- 1 Shown is the ianafmn of the central erfimvfe with the number 
(M) of considered p05nts The expected value foly, i s  0 5767': [IO] 

I 1  0 671 93 1 665 53 0 648 47 
10 0.654 25 I 661 46 0 649 15 
9 064617 1 659 34 065144 
8 0 640 74 1658 29 0 652 42 
7 0 636 83 1 657 72 0 653 07 
6 0.633 92 1 657 27 0 653 37 
5 0631 58 I 65695 0 653 58 
4 0 629 65 1 655 70 0 653 73 

areshoyfiigtab!eA !n!hiiEaspwecons!derthe L t  I limit Weobtainthat V I  = 1.58-tl. 
a value which IS 10% out from the expected one (q = 1.7339+3) [IO]. We have also 
considered the L-,  m limit by fixing the N'= IO cluster, and allowing the others to go 
to i n h i t y  with the procedures described above. We have obtained that V I I  = 1.53*2 

The vll exponent can also he obtained by considering that the scaling factor Lu 
between twa clusters is given by the ratio of tlse effective lengths ( L ~ ~ , N ~ / L ~ ~ , ~ ~ )  [ i l l  as 
discussed befare. Again we have an exponent depending on the scaling factor and on 
the linea; dimension ofthe third cluster Thus we can use the same analysis We obtain 
the same vIl as before in the two limits (LII+l, Lll+m) with the same fitting quality. 
It means that for these asymmetric clusters the effective length variable is equivalent 
to the 

Extrapolations of y,, and y,, follow precisely the same arguments as for y,. In table 
3 is shown the variation of the central estimates for yb and yb. with the number M of 
considered points when clusters of N = 78 and N'= 66 sites 21 e maintained fixed and 
the third one is varying from 1 up to 55 sites. The case L + 1 is presented in table 4. 
There we have the variation of the central estimates of yh 2nd y,, w t h  the number of 
poinls considered. We cone!i.de that yh = 1 651 f 1 and y,,, = 0.653 * 1. This IS the first 
evaluation of yhS for the directed pemolation problem. The value of ?,, indicates that 
the directed exponents do not obey the usual scaling lax yh  = 4yp = 1.47 1131. 

length variable as argued by Redner [9]. 

4. Summar). 

The mean-Geld renormalization group approach to bulk and surface properties has 
been applied to the two-dimensional sire directed percolation problem. We have used 
mean-field asymmetric clusters with 1 up to 78 sites. We haw obtained a very good 
estimate of pc  = O  7 0 5 5 1  1. The obtained vIl exponent is 10% smaller Than the expected 
value. We believe that by considering a few more clusters this last result will he 
improved. We have evaiuzted also the exponent y,, ;nd found for the first time the 
value for the surface exponent yks = 0.693 f 1. Several extrapolation schemes have 
discussed in order to obtain the three-cluster MFRG results in a systematic way. Finally, 
it is worth mentioning that in the three-cluster hlFRG the incorrect assumption of the 
two-cluster MFRC that the boundary effective field scales d S  the order parameter has 
been corrected. This is essential in the study of the convergence of the MFRG results. 
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